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Abstract

The extraction and formation of musical structures through the analysis
of complex auditory scenes is a challenging task in signal processing and
machine learning. Musical analysis includes multiple open subtasks to be re-
solved, such as multi-pitch estimation, musical note tracking and multi-pitch
streaming. The main goal of this thesis is to create a framework for the
multipurpose description and evaluation of music, allowing inference from
different subtasks and a general improvement in the learnability of machine
learning models. This was achieved by investigating into the implementation
of a coherent structure between a spectral analysis of resonances and a type-
based knowledge representation in the musical domain, forming an analogy to
the perception, cognition and knowledge representation of human intelligence.
We created pitch-based hierarchies formed through density-based clustering
techniques in our self-defined hierarchical structure for the definition of musi-
cal objects perceived from audio signals. Our multipurpose framework for
musical analysis has a methodological contribution to various practical appli-
cations due to its precision and ability to deal with overlapping sound events,
which is one of the key challenges in music signal processing. Approaching
this problem through a cognitive perspective has a significant impact on
the way machine learning is performed nowadays, due to the possibility of
model inference for various subtasks in machine learning. Our software also
contributes to long-term prospective of explainable modelling and can be
used in other early related fields, including speech recognition. Overall, this
thesis bridges the gap between human intelligence and machine learning
through the development of a framework for knowledge representation and
the recognition of musical objects in a resonance spectrum.
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CHAPTER ZERO

Introduction

Human intelligence has the fascinating capability of recognizing musical
instruments, rhythm, pitches and other structures in music. It can focus
the auditory attention on a particular task and filter out a range of other
stimuli. This part of our intelligence involves four key components: perception,
cognition, knowledge representation and inference (Benetos et al., 2019).
Perception refers to the ability of analyzing input audio, and can significantly
vary based on what it has learned over different occasions, unlike sensation,
which remains relatively constant over time (O’Brien, 2023). Cognition is
the ability of recognizing musical objects, and can be seen as a resolution of a
system (Oppenheim and Magnasco, 2013). Knowledge representation is the
formation of musical structures from the obtained cognition, and inference
refers to the ability of learning from musical structures.

However, extracting musical structures with digital equipment is a challenging
task in signal processing and machine learning due to the complicated nature
of music. Interference between sound waves, noise (unwanted sound), and
reverberation can result in a complex cocktail of stimuli. Recent approaches
in the literature have made several attempts to extract musical structures,
including non-negative matrix factorization (NMF) (López-Serrano et al.,
2019; Holzapfel and Stylianou, 2008), Bayesian approaches (Donnelly, 2012;
Temperley, 2004) and neural networks (Draguns et al., 2021; Sleep, 2017).
Nonetheless, many aspects of musical analysis are still considered as open
problems in the literature.

Although the power of (deep) neural networks should not be questioned,
keeping the progress in the past years in mind, they do not really simulate the
functioning of the brain. Therefore, Wiggins (2020) proposed to construct an
explanatory model with a level of abstraction that describes the hypothetical
mechanisms (and not necessarily the effect) of the brain treating auditive
signals. Since music analysis has a close relation to other signal processing
problems, including speech recognition, the acquired solutions and insights
throughout the process can help to solve similar problems from a cognitive
perspective.

To advance towards the human-like perception, Homer, Harley, and Wiggins
(2023) proposed an idealized model of auditory receptive fields. The input
information for this model are the so-called discrete resonances, which are
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directly inspired from cochlear mechanics: the vibration of the eardrum in the
outer ear can be described as a damped harmonic oscillator (Chung, Pettigrew,
and Anson, 1981), from which the middle ear translates pressure waves to
mechanical energy. This awakens a resonance of the basilar membrane in
the inner ear that can be described as a mechanical resonance. Knowledge
representation, on the other hand, has been modeled by Harley (2020).
He developed a Common Hierarchical Abstract Knowledge Representation
for Anything (Harley, 2022a, CHAKRA). This type-based framework for
knowledge representation supporting the idea of life-long learning and can
be used for the representation of musical knowledge (Wiggins, Harris, and
Smaill, 1989).

The goal of this thesis is to tie the model of perception and knowledge
representation together through a model for cognition. Although audio is
in general expressive complete, containing a lot of information in a signal
(unlike MIDI files), it lacks in structural generality, making it not evident to
extract structures from audio files (Wiggins, 2020). We apply a clustering-
based approach for the extraction of musical objects in a discrete resonance
spectra and create a type-based knowledge representation specifically for
audio signals. Our aim is to create a bidirectional system which scores
well on both expressive completeness (e.g., audio waveforms) and structural
generality (e.g., sheet music) (Wiggins, Harris, and Smaill, 1989; Collins,
2018). Finally, a demonstration will be given of the possibilities with the
developed software by showcasing the extraction of pitch and overtones and
how they are structured in a knowledge representation.

In the first part of this thesis, the reader will be guided through a few
essential concepts in signal processing and psychoacoustics. These concepts
play a crucial role in the understanding of our cognitive model and approach.
Therefore, Chapter 1 gives an introduction to the different categories in
Fourier analysis and discusses the decomposition of a signal into complex
exponentials applies to audio signals. Chapter 2 delves deeper into this
subject and provides a definition of the Fourier Transform within the context
of a L2 Hilbert Space. In Chapter 3, several aspects of psychoacoustics are
briefly discussed, including the excessive explanation of our terminology (e.g.,
perception, constituent elements).

The second part provides the theoretical background behind our state-of-
the-art cognitive model. Chapter 4 lays out the fundamentals of cochlear
mechanics and discusses several observations about the transfer of perceptual
information between the basilar membrane in the cochlea and auditory cortex.
Using the presumption about cochlear mechanics, Chapter 5 introduces
the intricate world of discrete resonances. We also define resonances in a
Hilbert space, but this time, the basis in a Hilbert Space is not necessarily
orthogonal anymore. This entails interesting features for musical analysis,
including precision. This level of precision will play a crucial role in grouping
the resonances. Therefore, Chapter 6 describes the background behind
a density-based clustering algorithm (Ester et al., 1996, DBSCAN). This
method will be applied to the resonance spectra for the generation of a
stronger structural generality in audio files. The acquired knowledge will
be structured in a type-based knowledge representation. Chapter 7 finally
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presents the theory behind the framework (Harley, 2020, CHAKRA).

The last part outlines my own contribution to this research field. Chapter
8 describes our particular implementation of the CHAKRA framework, and
Chapter 9 discusses the implementation of our model that simulates cognition
in human intelligence. We simulate the connections made in the brain to
perceive music through a density-based clustering approach. We use the
DBSCAN algorithm, which clusters data as a human would do, and compare
the performance of two hyperparameter estimations, namely the silhouette
score and the kneedle method. Finally, we demonstrate the performance of
the cognition of pitch and overtones.



In order to understand our cognitive approach to musical audio analysis,
we first need to discuss the main parts of the Fourier Analysis and its
classic definition in a Hilbert space with orthogonal bases. However, in
the next part, this concept of orthogonality of bases for a decomposition
into resonances will not hold anymore. Finally, a concise yet essential
introduction to psychoacoustics will be given, which plays an important
role in the understanding of the cognitive clusters, formed from resonance
information.

I
Background on Musical

Audio Analysis
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CHAPTER ONE

Fourier Analysis of Auditory Signals
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Figure 1.1: A visualization showcasing Fourier anal-
ysis, where a square wave in the time domain is de-
composed into sinusoidal components. This decom-
position allows a transformation into the frequency
domain representation and vice versa. Edited from
Neutelings (2021a). The modifications made to
the figure include coloring and change of axis labels.

An auditory signal, such as a tone, sound, or spoken message, is a function
that carries information. Machines are not able to store values up to infinity,
and thus audio files are a discretization of the actual signal, sampled at a
certain rate. The specifics of sampling rates exceed the scope of this topic,
but as a general guideline, recording at 44.1 kHz typically yields high-quality
results1.

1 The Nyquist sampling theorem states that in order
to sample a signal at a certain frequency without
significant lost, it should be sampled at twice that
frequency. And since the limit of human hearing is
approximately 20kHz, it requires a sample rate of
44 kHz.

(2) Continuous Fourier Transform

(1) Fourier Series

(4) Discrete Time Fourier Transform

(3) Discrete Fourier Transform

Figure 1.2: An illustration providing the behav-
ioral nature of the four fundamental Fourier Trans-
form Categories, namely Fourier Series, Continuous
Fourier Transform, Discrete Fourier Transform, and
Discrete Time Fourier Transform.

For many applications, such as the analysis of pitch intensities, it is interesting
to transform the time-domain signal into a frequency-domain representation
with the Fourier transform (Figure 1.1). The Fourier transform is a general
term that can be split into four categories, depending on a combination of
four characteristics of the input signal: periodic or aperiodic and continuous
or discrete. For each category, a specific name is given to refer to a type of
signal (Smith, 1997):

1. Periodic-Continuous: "Fourier Series"

2. Aperiodic-Continuous: "(Continuous) Fourier Transform"

3. Periodic-Discrete: "Discrete Fourier Transform"

4. Aperiodic-Discrete: "Discrete Time Fourier Transform"

Sometimes, the Fourier transform is regarded as an extension of Fourier
series because it can handle both periodic and aperiodic signals. We will
begin by introducing some fundamental theoretical concepts using Fourier
series and then delve into the Continuous and Discrete Fourier Transform.
The discrete-time Fourier transform represents a fourth category of the
Fourier Transform; however, due to its limited relevance to the subsequent
discussions, we will not explore its intricacies in detail. Lastly, the Fast Fourier
Transform and Short-Time Fourier Transform will be introduced for a more
practical background.

1.1 Theoretical background

1.1.1 Fourier Series
Consider an ideal string vibrating solely at the fundamental harmonic A4. This
repeating pattern corresponds to a single sinusoidal wave with a frequency of
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1.1. THEORETICAL BACKGROUND

440 Hz (cycles per second), as roughly depicted in Figure 1.3(a). However,
when an instrument plays the A4 note, the resulting sound differs from
the sound of an ideal string. This variation is caused by differences in the
combination of multiple harmonics or soundwaves, which makes determining
the precise real-valued function of a violin or piano a more challenging task,
as illustrated in Figures 1.3 and 1.4. Nonetheless, it can be approximated by
summing weighted sines and cosines using the Fourier series:

(a) Sine wave

(b) Violin

(c) Piano

Figure 1.3: Three different time-domain signals of
similar notes played with a pure tone, violin and
piano.

f (t) =
a0
2
+

1X

n=�1
[An cos(!nt) + iAn sin(!nt)]. (1.1)

The sine and cosine waves serve as the fundamental basis functions in
the Fourier transform. Frequency ! is a compact representation of the
natural frequency 2⇡� = 2⇡

T , where T represents the period (the time
required for a complete rotation around the unit circle). In this context,
� = 1

T . ! can be interpreted as angular speed2. Note that the sine and

2 The choice of notation (! or 2⇡� ) depends on
the specific field of study, here, ! is measured in
radians per second, while 2⇡� is measured in cycles
per second.

cosine notation can be expressed in exponential form using Euler’s formula:
e i!t = cos(!t) + i sin(!t):

f (t) =
1X

n=�1
Ane

i!nt . (1.2)

Frequency Frequency

A
m

pl
itu

de (b) Violin(a) Piano

Figure 1.4: An example of the harmonics of similar
notes in the frequency-domain played with piano
and violin (Arvin and Doraisamy, 2009).

The exponential form using Euler’s formula is a more convenient way to
represent the sine and cosine waves due to its compactness. It can also be
visualized effectively in the complex plane, as depicted in Figure 1.5.

Im

Re

z(
t)
=
Ae
i!
t

!t

t [s]

Im

!t

TT

2T2T

y(t) = A sin(!t)

t [s]

Re

!t

T

2Tx(t) = A cos(!t)

t [s]

Im

Re

Figure 1.5: A simple harmonic oscillator projected in 3D with sinusoidal waves in the
Cartesian plane and their compact representation in the complex plane. The real part and
the imaginary part of this analytic signal are related through the Hilbert transform. Edited
from Neutelings (2021b).

Note that in the description above, the notion of phase shift � was omitted
for simplicity. In reality, digital encoding of audio signals can introduce
(unwanted) phase shifts � (Figure 1.6):

f (t) =
1X

n=�1
Ane

i(!nt+�). (1.3)
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CHAPTER 1. FOURIER ANALYSIS OF AUDITORY SIGNALS

1.1.2 Continuous Fourier Transform
Fourier series is sufficient to describe periodic signals, but for more compli-
cated aperiodic functions, the (continuous) Fourier transform is required.
This transform allows the conversion of a continuous time-domain signal into
the frequency domain through an invertible linear transformation, defined as
follows:

Im

Re

!t
�

!

Figure 1.6: Simple harmonic oscillator with phase
shift � in the polar plane.

F [f (t)] = f̂ (!) = 1p
2⇡

Z 1

�1
f (t)e i!tdt t,! 2 R, (1.4)

and the inverse Fourier transform as

F�1[f̂ (!)] = f (t) = 1p
2⇡

Z 1

�1
f̂ (!)e�i!td! t,! 2 R. (1.5)

Notice the similarity between the Fourier transform and its inverse. In this
case, a symmetric notation is used for both transforms. However, in other
literature, the term 1p

2⇡
may be excluded from the Fourier transform and only

included in the inverse Fourier transform as 1
2⇡ (Baraniuk, 2020). Here, we

evenly distribute this term across both transforms, acting as a normalization
factor.

1.1.3 Discrete Fourier Transform
Digital computers can only process discrete and finite data, and since audio
data is aperiodic and discrete, the Discrete Time Fourier Transform (DTFT) is
intuitively applicable. However, in practice, the "Discrete Fourier Transform"
(DFT) is mostly used, often extended with various techniques to enhance its
performance, such as improving speed. In this equation, the continuous-time
signal is represented by discrete values:

F [x [n]] = X[k ] =
N�1X

n=0

x [n]e�i
2⇡
N
kn k = 0, 1, ...N � 1, (1.6)

nn-1 1

Im

Re

2
. . .

2⇡
N n

Figure 1.7: Polar representation of phasor in a
discrete unit circle.

and the inverse Discrete Fourier transform:

F�1[X[k ]] = x [n] = 1
N

N�1X

k=0

X[k ]e i
2⇡
N
kn k = 0, 1, ...N � 1. (1.7)

N represents the number of samples, often chosen as a power of two,
indicating that only specific points n can be captured by the Discrete Fourier
Transform (Figure 1.7).

In the frequency domain, the sampled frequency k corresponds to the number
of rotations around the unit circle in N points. It is worth noting that in this
notation, we avoid using the abstraction of ! to highlight the discrete nature
of the formulation.
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1.2. PRACTICAL BACKGROUND

1.2 Practical Background
The Fast Fourier Transform (FFT) and Short-Time Fourier Transform
(STFT) are two commonly used techniques for the calculation of a sig-
nal’s DFT. Due to significant speed enhancements of the implemented
algorithms, the FFT and STFT became valuable tools across a range of
signal processing applications.

0 50k 100k 150k 200k 250k

�1

�0.5

0

0.5

1

Figure 1.8: The power spectral density function
estimated through the Fast Fourier Transform by
calculating the squared magnitude of the Fourier
coefficients.

1.2.1 Fast Fourier Transform

0 50k 100k 150k 200k 250k

�1

�0.5

0

0.5

1

Figure 1.9: The spectrogram of a fragment from
Debussy’s Syrinx, obtained by calculating the
squared magnitude of the signal’s power spectral
density in each time segment.

The FFT is an efficient algorithm used to compute the Discrete Fourier
Transform (DFT) of a signal. The main practical problem with the DFT
(Discrete Fourier Transform), is that it requires large matrix multiplications
and summations over all its elements, which are computationally expensive
operations. A viable solution is the Cooley-Tukey algorithm, which is one
of the most common algorithms used in the FFT. It reduces the computa-
tional time of the DFT from O(n2) to O(n log(n)) by dividing its elements
recursively into two groups based on parity (odd or even indices) until the
elements are computationally manageable with the DFT (Cooley and Tukey,
1965).

An application of the Fast Fourier Transform is the estimation of the power
spectral density function, as shown in Figure 1.8. The power spectral density
(PSD) represents the distribution of signal power across different frequencies.

1.2.2 Short-Time Fourier Transform
The Short-Time Fourier Transform (STFT) is performed by calculating the
FFT over shorter time segments that might overlap. These time segments,
referred to as the window size, determine the resolution of the STFT.
Similarly, the frequency is divided into frequency bins. It is crucial to note
that the window size and frequency bin count collectively determine the
precision of the STFT. In Chapter 4, we will discuss the Fourier uncertainty
principle in more detail, which sets a limit on the precision of this transform.
Consequently, when applying the STFT, there is a trade-off between time
and frequency that needs to be considered. For instance, a spectrogram
(Figure 1.9) illustrates the impact of this uncertainty bound on the precision
of the transform.

1.3 Summary
We discussed four categories of the well-known Fourier Transform and high-
lighted the Discrete Fourier Transform, which is used the most in practice.
We also gave a practical introduction to the Fast Fourier Transform and Short
Time Fourier Transform. The understanding of the main idea behind the
DFT and FFT will play an important role in Chapter 5, with the introduction
of the so-called Fast Padé Transform. The next chapter takes a deeper dive
into the underlying mathematics behind Fourier Analysis. We will define the
Fourier Transform in a L2 Hilbert Space, which is a complete inner product
space.
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CHAPTER TWO

Hilbert Spaces

Banach Spaces

Normed Spaces

Metric Spaces

Vector space

Inner-product
Spaces

Hilbert Spaces

Euclidean Vector Space

Figure 2.1: Relations among different spaces in
functional analysis.

A Hilbert space H is a complete inner product space, and its theory can
be considered as a generalization of the familiar Euclidean vector space
(e.g. Rn). It is a vector space where vectors (usually described using finite
real or complex numbers), functions, and even more general objects can
be represented. It allows us to define us a complete set of basis functions,
which are, in case of the Fourier Transform, complex exponentials (e.g.,
sinusoidals). For this chapter, the crucial idea to understand is that functions
can be thought of as vectors with an infinite number of dimensions with
certain basis properties.

Theorem 2.1 (Complete normed spaces (Banach Spaces)). A normed
space H is called complete if every Cauchy sequence of vectors in H
converges to a vector in H. A complete normed space is called a Banach
space (Kennedy and Sadeghi, 2013).

As illustrated in Figure 2.1, all (finite-dimensional) Hilbert spaces are Banach
spaces, which means that it is both normed and complete. However, not
all Banach spaces are Hilbert spaces. In order for a Banach space to be
considered a Hilbert space, the norm (or distance) must be induced by the
inner product. The inner product of two signals is a scaled projection, i.e., a
scalar which may contain complex values and can be defined as

h↵|�i = ↵1�1 + ↵2�2 + ...+ ↵N�N . (2.1)

This means that given an inner product h·i in a vector space H, the norm is
defined as

||f || =
p
hf |f i. (2.2)

Examples of relevant Hilbert Spaces are Cn, the `2- and L2-spaces. The
`2 is the space of absolutely square-summable sequences and L2-space of
absolutely square-summable functions. It should be noted that the bases
of a normed space are not necessarily orthonormal. A normed space is a
type of vector space that has a norm, which is a mathematical function
that gives each vector in the space a non-negative size or magnitude, and
satisfies certain properties such as non-negativity, homogeneity, and the

10



2.1. COMPLETENESS, INTEGRATION AND INFINITY IN HILBERT
SPACES

triangle inequality. A second important point to be aware of, is that the
concept of completeness is closely linked to the norm. In a normed space, a
sequence of vectors should converge, in terms of their norm, to a vector that
is within the original space, in order for the space to be considered complete.

2.1 Completeness, Integration and Infinity in
Hilbert Spaces

The usage of Hilbert spaces is in general interesting for dealing with infinity,
the meaning of Fourier series, and the definition of an inner product in
terms of integrals (Kennedy and Sadeghi, 2013). When talking about infinity
and Hilbert spaces, one refers mostly to its dimensionality dimF (H). The
dimension of a Hilbert space is the number of vectors (i.e., cardinality) in
its basis. Finite-dimensional Hilbert spaces are defined as complete. This
means that they are suitable for including the natural limits of converging
vector sequences. In contrast, infinite-dimensional spaces are not necessarily
complete, since there might be Cauchy sequences which do not converge.
An example of a complete infinite-dimensional space is L2, the space of
square-integrable functions, a real- or complex-valued measurable function
for which the integral of the square of the absolute value (i.e., the real axis)
is finite:

f : R! C square integrable ,
Z 1

�1
|f (x)|2 dx <1. (2.3)

In this way, a complete space is defined to work in. Thus, when defining the
inner product,

hf |gi =
Z +1

�1
f (x)g(x) dx (2.4)

where f and g are both square integrable functions and g(x) is the complex
conjugate of g(x).

2.2 Bases in a Hilbert Space
�1

�2..�n

f

hf i�2�2

hf i�1�1

Figure 2.2: Geometrical interpretation of inner
products projected along �n in 2D with orthonor-
mal bases.

2.2.1 Hilbert Space with Orthogonal Bases

Example: Fourier Series

From the perspective of linear algebra, Fourier series is a decomposition of a
periodic function into an infinite sum of (simple) harmonic oscillators in terms
of a complete orthonormal sequence {�n}1n=1 in a Hilbert space H (Russel,
2021; Kennedy and Sadeghi, 2013). It should be noted that the underneath
definition assumes a robust orthonormal sequence; however, the essential
characteristic of the orthonormal sequence is its property of orthogonality
(since an orthonormal sequence is a normalized orthogonal sequence).
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CHAPTER 2. HILBERT SPACES

Theorem 2.2 (Fourier Series). In a separable Hilbert space, the expan-
sion

f =
1X

n=1

hf |�ni�n. (2.5)

of any f 2 H in terms of a complete orthonormal sequence {�n}1n=1 is
called a Fourier series expansion, and the coefficients

hf |�ni 2 C (2.6)

are called the Fourier series coefficients.

Note that we consider here a separable Hilbert space, which means that it
only admits a countable orthonormal basis and thus there is a countable
dense family of functions.

Furthermore, f can be expressed as a (complex) linear combination of the
en’s, thus the family en spans implicitly L2 in this definition. Geometrically,
it simply represents the projection of f along �n, as illustrated in Figure 2.2.

Example: Discrete Fourier Transform

nn-1 1

Im

Re

2
. . .

2⇡
N n

Figure 2.3: A pole-zero diagram representing
uniformly-spaced points due to a decomposition
into orthogonal bases.

The Discrete Fourier Transform, introduced in Chapter 1, is defined by the
discrete orthogonality property of its basis vectors:

N�1X

n=0

e i(
2⇡
N )nke�i(

2⇡
N )nl =

⇢
N, k 6= l
0, k = l

(2.7)

To simplify the expression, we can introduce the variable ↵ = e i(
2⇡
N )n, leading

to the following formulation:

N�1X

n=0

↵(k�l) =

⇢
N, k 6= l
0, k = l

(2.8)

Thus, the product of the two exponentials is 0 or N, which corresponds to
the same point in the complex plane and so the summation over a period
becomes 0.

Example: Daubechies Wavelets

scaling function
wavelet function

Figure 2.4: An example of a Daubechies 4 tap
wavelet (LutzL, 2009).

The wavelet revolution in 1986 was started with the creation of the first
set of wavelets that were at least as powerful as Fourier components. The
technique was published by Pierre Lemarié and Meyer (1986) in Ondelettes
et bases Hilbertiennes, which literally means "small waves in Hilbert Spaces".
Wavelets are a family of differently shaped short-lived oscillations localized in
time that can be used to analyze a signal and simultaneously give a solution
in time and frequency. They have different characteristics serving for different
purposes, such as symmetry, regularity, vanishing moments and orthogonality
(Kainulainen and Maercker, 2022). The wavelet transform can be, similarly to
the Fourier Transform, categorized as a continuous wavelet transform (CWT)

12



2.3. REAL-VALUED SIGNALS IN A HILBERT SPACE

or discrete wavelet transform (DWT). Within the DWT, a distinction is made
between the redundant discrete systems and orthonormal (and others) bases
of wavelets (Daubechies, 1992).

+

e1

f

e2

e3

=

+

Time

A
m

pl
itu

de

Figure 2.5: A linear combination of the complex
exponentials e1, e2, e3 (visualized in Re) approxi-
mating function f .

f

x0 x3 x5 . . . x0 + L

Time

A
m
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itu

de

Figure 2.6: A sampled signal f over a period of L
in the time domain.

Ingrid Daubechies, a famous Belgian physicist and mathematician who ob-
tained a doctoral degree at the VUB in 1980, came up with a family of
orthogonal wavelets called the Daubechies wavelets and characterized by a
maximal number of vanishing moments within a specific range. A vanishing
moment constrains a wavelet by a polynomial, i.e., a signal with n vanishing
moment encodes a polynomial of n coefficients. In practice, improvements
in speed for the DWT are also provided with the Fast Wavelet transform.
Wavelets can be applied in music for the determination of notes with time
and frequency information, by convolving a wavelet with a signal.

2.3 Real-valued signals in a Hilbert space
As previously discussed, a real-valued signal can be expressed as a linear
combination of various basis functions, including complex exponentials (Figure
2.5). Notice that digital computers work with sampled functions (Figure
2.6). They are computable finite-dimensional vectors and representable in
an n-dimensional Hilbert space (i.e., an inner-product space). We interpret
the components of the basis functions ek and function f as function values:

f̃ = hek |f i =

2

66666664

ek(x0)

ek(x1)

.

.

.

ek(xL)

3

77777775

⇥

2

66666664

f (x0)

f (x1)

.

.

.

f (xL)

3

77777775

(2.9)

Notice, signal f̃ is a complex-valued function. Since there are theoretically
an infinite amount of function values, we write the summation as an integral.
To satisfy the mathematical properties of an inner product: f̃ : R! C, the
first argument in the integral should be the complex conjugate.

f̃ =

Z x0+L

x0

ek(x)f (x)dx. (2.10)

2.4 Summary
We raised our level of sophistication of the analysis of the Fourier transform
through the introduction of Hilbert Spaces. We discussed its properties and
relation towards Fourier analysis and emphasized the orthogonal basis that
are often used in Hilbert Spaces. However, in Chapter 5, the basis will no
longer be required to be orthogonal.
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CHAPTER THREE

Psychoacoustics

This chapter will introduce several important concepts in the perception of
sound, which will play an important role in the interpretation of resonance
spectrograms (Chapter 5) and the creation of hierarchies (Chapter 8) in our
knowledge representation. Psychoacoustics is the scientific field that studies
the human perception of sound and the psychological responses associated
with it. We will discuss the fundamental difference between sensing and
perceiving in this chapter and explore how inference influences our perception
of sound and can create new (unwanted) tones.

3.1 Sensing and Perceiving
Many different descriptions of the distinction between sensing and perceiving
were given throughout history. Aristotle described perception as an act of
self-consciousness, representing a reflective self-awareness of our perceptual
actions (Kosman, 1975). Another commonly accepted explanation is that
learning influences perception but not sensation. This means that perception
can vary significantly based on what has been learned over different occasions,
while sensitivity remains relatively constant over time (unless temporal changes
in sensitivity are established) (O’Brien, 2023). Figure 3.1 visually illustrates

Figure 3.1: A Kanizsa triangle illustrating the dif-
ference between sensing and perceiving through the
formation of an illusionary triangle from incomplete
circles.

the distinction between sensing, which involves receiving external information
from three circles with triangular gaps, and perception, which involves the
inference of additional information from the triangle between the circles with
gaps (Kellman and Shipley, 1991).

3.2 Perception of Sound

3.2.1 Missing Fundamental
The phenomenon of the missing fundamental is the perception of the funda-
mental frequency when it is not physically present in the original sound. This
perception occurs because the auditory cortex, the region of the brain respon-
sible for sound processing, interprets repetitive patterns of the overtones that
are present (Smith et al., 1978; Zatorre, 2005; Schneider et al., 2005). The
model of pitch perception, which will be discussed in Chapter 5, captures
this missing fundamental effect (Homer, Harley, and Wiggins, 2023).
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3.3. THE FUNDAMENTAL AND (NON)HARMONIC OVERTONES

3.2.2 Combination Tone

1

1

1

2

2

2

f1 (10Hz)

f2 (8Hz)

fdif f (2Hz)

3

3

4

4

5
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6
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8 9 10

Figure 3.2: Visualization of difference tones, in-
spired by the book "For the Contemporary Flutist"
(Offermans, 2023).

A combination tone refers to the psychoacoustic phenomenon where an
additional tone or tones are perceived when two actual musical tones are
played simultaneously (Hosch, 2023). There are two types of combination
tones: difference tones and summation tones. Difference tones are generated
by subtracting the frequency of one tone from the frequency of another tone,
as shown in Figure 3.2. On the other hand, summation tones are produced
by adding the frequencies of the two tones together.

Difference Tone

Difference tones are commonly observed when a harmonic series produces
a fifth between notes. This phenomenon can also be heard in a room with
sufficient reverberation, where the echo of the initial sound interferes with
the live sound. Another situation where difference tones can occur is with
ethnic flutes combined with big drums (Offermans, 2023). Figure 3.3 shows
a sample excerpt wherein two flutes are playing together, and visualizes the
appearing difference tones of this performance.

Figure 3.3: Sample of a piece for "For the Contemporary Flutist" illustrating difference
tones (Offermans, 2023).

The well-known quote by W. A. Mozart, "What’s worse than the sound of a
flute? Two flutes.", gains a stronger meaning now in the context of difference
tones. While the phenomenon is not exclusive to wind instruments, Mozart
clearly expressed his dislike for this additional sound artifact in his compositions.
However, setting aside Mozart’s disfavor towards flutes, difference tones can
be seen as an immense extension to the sound of an orchestra, where the
sound of multiple instruments interferes with each other.

3.3 The Fundamental and (Non)harmonic Over-
tones

0 1

1/2

1/3

1/4

Figure 3.4: A fundamental and its three harmonic
overtones.

A harmonic can be defined as one of the components of the harmonic series,
which represents a collection of frequencies that are (nearly) positive integer
multiples of a single fundamental frequency. Most real-valued signals, except
pure sine waves, consist of a fundamental frequency (the first harmonic) and
overtones (higher harmonics), which are sinusoidal components at integer
multiples of the fundamental frequency. However, real-valued signals can
also contain non-harmonic overtones, which do not follow the harmonic
series (Young, 1954). In Figure 3.5, the harmonics are depicted with a
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blue line, while the non-harmonics are shown with an orange line. Organic
sounds produced by instruments like guitars and pianos typically include both
harmonic and non-harmonic overtones, as the vibrations of metal, wood, and
membranes generate non-harmonic overtones, which contribute to the timbre
of a sound (McAdams, 2019).

Frequency

P
ow

er
(d

B
)

Figure 3.5: This image depicts the distinction be-
tween harmonic overtones, represented by the green
lines, and non-harmonic overtones, represented by
the blue lines.

3.3.1 Structualism
According to the theory of structuralism, everyday perception is composed or
constructed from basic sensations. Psychologists such as Edward Bradford
Titchener, who practiced introspection, developed a systematic method to
experimentally deconstruct percepts and identify their constituent elements
in order to understand the underlying structure of perception (Hatfield, 2015).
In the context of hearing, various artifacts emerge during the transition
from sensing to perceiving. Artifacts such as difference tones and missing
fundamentals are just a few examples. Thus, if percepts are syntheses
of simpler elements, the question arises whether these elements can be
experienced and what they would be in that case. This forms the fundamental
philosophy behind the multi-hierarchical structure of constituents developed
by Nicholas Harley (2020).

3.4 Summary
This part is a transition to our cognitive approach towards musical analysis and
elaborated on the difference between sensing and perceiving. We addressed
the psychoacoustic phenomenon where additional tones are perceived due to
inference. We introduced the basic concepts of the fundamental tone and
non-harmonic overtones. Later in this thesis, we will extract the fundamental
and harmonic overtones of musical performances and group the constituent
elements of a fundamental together in a knowledge representation.



The aim of this part is to present the theoretical foundation for our developed
models of perception, cognition, and knowledge representation. The first two
chapters are reserved for modelling and explaining the perceptual components
of our intelligence. Starting with cochlear mechanics and followed by discrete
resonances, which is a simplified model simulating the resonance of the basilar
membrane. Additionally, we will examine a density-based clustering algorithm
inspired by visual cognition, which holds potential for auditory analysis. Lastly,
we will explore the theoretical underpinnings of our knowledge representation,
constructed from clustered information.

II
A Cognitive Approach to

Musical Audio Analysis
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CHAPTER FOUR

The Mechanisms of Hearing

Hearing is both a sensory and perceptual process and involves more than just
the transmission of mechanical waves to the auditory cortex. This section
will discuss how the Cochlea can be seen as an extremely precise Fourier
Analyzer and present the progression of scientific investigations aimed at
unraveling the Cochlear mechanics. This will lead to the conceptualization
of an idealized model for the receptive fields called resonances, which aim is
to simulate (a part of) the inner ear mechanisms.

4.1 Cochlea as a Fourier Analyzer

20 000 Hz

7 000 Hz

600 Hz

3000 Hz

5 000 Hz

200 Hz

Figure 4.1: Approximated frequency ranges in the
cochlea.

Basilar membrane
Apex

Base

Figure 4.2: A simplified representation of an un-
rolled cochlea containing the basilar membrane. At
the base of the cochlea, the cochlear system de-
codes high frequency signals and low frequency
signals at the apex (Kim and Koo, 2015).

Sound waves travel through the outer ear canal and initialize vibration in
the tympanic membrane by hitting it. This vibration is transmitted to the
oval window, creating waves that travel through the fluid of the cochlea, a
snail-shaped coiled tube in the human hearing system, which functions as a
Fourier analyzer. Inside the cochlea, different spots of the basilar membrane
respond to different frequencies of the waves, called tonotopy. This vibration
stimulates thousands of about 12 000 tiny cilia (hair cells) inside the organ
of Corti, laying ontop of the basilar membrane. It contains outer hair cells
(OHC) that convert the auditory signal into electrical signals and inner hair
cells that transmit these pulses to the auditory nerves, connected to the
auditory cortex in the brain (Elliott and Shera, 2012; Vavakou, Cooper, and
Heijden, 2019). Figure 4.1 illustrates the organization of different frequencies
on the basilar membrane. The cochlear base, located at the beginning of the
tube, is more sensitive to high-frequency waves, while the cochlear apex at
the end of the tube is most sensitive to low-frequency waves. The detectable
range of sound for the human ear typically falls between 20 Hz and 20,000
Hz.

4.2 Modelling the Mechanisms of Hearing
In the past 200 years, several attempts have been made to understand
cochlear mechanics, starting from Helmholtz’s resonance theory, which later
evolved into traveling wave theory due to the work of Békésy (Manley, Narins,
and Fay, 2012). Early experiments conducted by Wegel and Lane (1924)
strongly indicated that the resonators in the ear are heavily damped. Later,
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4.3. SUMMARY

Gabor (1947) discussed that the duration of a sound has an influence on
the resonance pattern of the inner ear due to the two mechanisms at work:
the first mechanism involves the usual resonance pattern of the inner ear,
while the second mechanism involves the search for maximum excitation or
amplitude, which allows for accurate sound perception when the duration of
a pure tone is sufficiently long (as illustrated in Figure 4.3). He explains it as
the effect of gradually decrease of stimulation fibers in the auditory system.
Additionally, Gabor noted that sound is perceived as "musical" only when
the second mechanism comes into play, making it particularly interesting for
musical data. For speech perception, on the contrary, it is enough to rely on
only the first mechanism.

(ms)

f0 f0 + 50f0 � 50

(cycles/sec)

time

250

50

10

3 cycles/sec

15 cycles/sec

First mechanism (resonator)
Second mechanism

Figure 4.3: The two mechanisms of hearing,
wherein the second mechanism tends to approx-
imate the maximum amplitude when the duration
of a pure tone increments. The illustration is a
reproduction from (Gabor, 1947).

In more recent work, Vavakou, Cooper, and Heijden (2019) observed that the
OHC are operating like envelope detectors, which means that they can detect
variations in volume and modify them, by altering their length in response
to electrical stimulation before the transmission to the inner hair cell. This
property is called OHC electromotility (Brownell, 2017). An interesting detail
to mention, is that both Brownell (2017) and Bacon et al. (1999) noticed
that the cochlea exhibits less linearity at the base, where the membrane is
generally stimulated by high frequencies, compared to the apex, suggesting
non-linearity in the excitation of inner hair cells.

4.2.1 The Fourier Uncertainty Principle and Hearing
It has been proven that linear operators (e.g. windowing, filtering, scaling, ...)
cannot exceed the uncertainty bound, and only the trade-off between time
and frequency resolution can be improved (Theodor, 1997). The discussed
Fourier Uncertainty theorem states that

�t�f � 1
4⇡
, (4.1)

which implies that it is impossible to localize both a nonzero function and
its Fourier transform with great precision in time-frequency analysis, which
challenges the STFT to perform with great precision. By precision, we are
referring to the capability to accurately track parameters of individual entities
(Dubey, 2021; Oppenheim and Magnasco, 2013).

However, Oppenheim and Magnasco (2013) showed that human hearing can
discriminate much better than the uncertainty bound, which highlights the
relevance of approaching the problem from a perspective that models the
hypothetical mechanisms of hearing.

4.3 Summary
We summarized findings about the fundamental processes of auditory per-
ception and illustrated that through the last decades, new details about the
inner working of the cochlea have been mentioned in research, agreeing on
several behaviors, including the damped or driven behavior of the signal. We
grounded our assumptions about the mechanisms of hearing to model the
input information for the perception of sound with discrete resonances, which
we will discuss in the next chapter.
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CHAPTER F IVE

Discrete Resonance Spectrum

The discrete resonances are the input information for an idealized model of
auditory receptive fields, and a proxy for the information that is received by
auditory cortex from the cochlea. A resonance produces, as described by
Homer, Harley, and Wiggins (2023), a neural oscillation that damps in a short
period of time. This method is an enhancement in the representation, analysis,
and processing of intricate non-stationary auditory signals, outperforming
the standard Fourier Transform with orthogonal basis in terms of precision
due to nonlinearity. We will start with a mathematical description of discrete
resonances and weave afterward some seemingly diverse mathematical topics
together for the derivation of the Fast Padé Transform. Finally, the benefits
of a non-orthogonal basis in a Hilbert space will be demonstrated.

5.1 Discrete Resonances in Time Domain
As with Fourier analysis a time-domain signal can be decomposed in different
sines and cosines, a signal can also be decomposed in a linear combination
of K complex oscillators ("resonances"). These time-domain signals are
defined as follows:

x(t) =
KX

k=1

dke
�i!k t dk ,!k 2 C. (5.1)

Figure 5.1: Visualization of the real part of a reso-
nance with an exponential decay factor as an en-
velop (Neutelings, 2021b).

Signal x is formed by a summation of different complex resonances with dk
the initial complex amplitude of the oscillator and a rotating vector e�i!k t ,
dependent on the complex frequency !k . It might seem illogical to see the
notation of a continuous signal for discrete resonances (i.e., x(t) instead of
x [n]). We will leave the details behind this formulation beside, the important
thing is to know that it is based on the Continuous Fourier Transform, and
will only be discretized in the actual implementation.

Just to prevent confusion with the previous chapter: the definition of res-
onances describes a time-signal that is decomposed in damped or driven
oscillators, just like Fourier series did for stationary signals. In resonances,
a fourth dimension is added, containing the decay. In a 3D representation,
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5.2. DISCRETE RESONANCES IN FREQUENCY DOMAIN

the following visualization in Figure 5.2 of a resonance can give a more intu-
itive feeling for its appearance. The decay can be observed as the complex
exponential function in Figure 5.1.
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Ae
i!k
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!t
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2T2T

y(t) = Ae��t sin(!t)

t [s]
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!t

T

2Tx(t) = Ae ��tcos(!t)

t [s]

Im

Re

Figure 5.2: A visual representation of a resonance in 3D.

The complex frequency !k consists of a real and imaginary part, namely the
frequency of the resonance �k and the rate of decay �k as a complex part:
!k = �k + i�k . A short mathematical interpretation illustrates the intuition
behind this formulation: Figure 5.3: A discrete resonance with the complex

part visualized with dotted lines and the real part
with the continuous line (Homer, Harley, and Wig-
gins, 2023).

e�i!k t = e�i(�k+i�k )t

= e�i�k t+�k t

= e�k te�i�k t

= e�k t [cos(�kt)� i sin(�kt)]
= e�k t [cos(�kt) + i sin(�kt)]

⇤

(5.2)

�k describes the decay of the resonance, and the sine and cosine terms are a
representation of the oscillatory behavior and denote the frequency. Visually,
one can think of it as decayed or augmented sine waves. Furthermore, dk can
be rewritten as |dk |e i k t , with  k denoting the initial phase of the oscillator.
The absolute value of the amplitude is the polar representation of dk .

x [t] =
KX

k=1

|dk |e i k te�i(�k+i�k )t |dk |, k ,�k , �k 2 R (5.3)

5.2 Discrete Resonances in Frequency Domain
The Fourier transform is a tool for performing spectral analysis of time-domain
signals. It is defined with respect to frequency �. Here, the oscillatory signal
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CHAPTER 5. DISCRETE RESONANCE SPECTRUM

is represented in the frequency domain:

X(�) =
ip
2⇡

KX

k=1

dk
�� !k

=
ip
2⇡

KX

k=1

|dk |e i k
�� (�k + i�k)

. (5.4)

The absolute value of the amplitude dk corresponds in the frequency domain
to the size of the resonance peak. Frequency �k defines the location of
the resonance peak, and decay �k influences the width and polarity of the
resonance peak in the frequency domain. Here, again,  k is the initial phase of
the oscillator. In the frequency domain, it has an effect on altering the angle
of the rotating vector, thus the cotangent of the angle: Re[f (�)]/ Im[f (�)].

Figure 5.4: A discrete resonance in the frequency
domain (Homer, Harley, and Wiggins, 2023).

5.3 The Fast Padé Transform (FPT)
In section 1.2.1, we briefly discussed the Fast Fourier Transform. The power
for finding the coefficients hides in the specific selection and evaluation of
complex numbers sitting evenly spaced on the unit circle, or, in other words,
due to the restriction of having orthogonal bases in a Hilbert Space.

However, when the complex numbers are not evenly spaced, and not even
necessarily on the unit circle (which is the case for discrete resonances), it
becomes a quite expensive operation to find those coefficients. Therefore,
Steven Homer (personal communication, 2023) applied The Fast Padé
Transform (Belkic, 2019) on resonances to estimate the spectral density
function of a time series signal, which is a distribution of the power of a signal
across different frequencies. The Fast Padé Transform itself is a numerical
algorithm for approximating the power series expansion of a function in a
given interval. It is a fast and efficient and can compute the coefficients of a
Padé approximant, which is a rational function that interpolates the power
series expansion of a function

5.3.1 Preliminary Knowledge

We will begin by refreshing key concepts from linear algebra. This primer
will help establish a solid foundation for understanding the mathematical
derivation of the Fast Padé Transform.

Definition 5.1 (Generating function). A generating function G(x) en-
codes an infinite sequence of numbers by treating them as coefficients
of a formal power series.

A simple example of a generating function is the encoding of even numbers
with

G(x) =
2x

(1� x)2 , (5.5)

which will generate the sequence of even numbers {0, 2, 4, 6, 8, ...}.
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5.3. THE FAST PADÉ TRANSFORM (FPT)

Definition 5.2 (Constant-recursive sequence). A constant-recursive
sequence is an infinite sequence of numbers, where each number in the
sequence is equal to a fixed linear combination of one or more of its
immediate predecessors.

This feature will be important in the further derivation, since the sequence is
constant recursive, this will allow us to define analytic functions in a Hilbert
space.

5.3.2 Mathematical Derivation

We will now discuss the rough structure of a mathematical derivation for
the Fast Padé Transform originating from Belkic (2019) and applied to the
resonance spectrum by Steven Homer (personal communication, 2023).

Assume the ordinary generation function G of the infinite constant-recursive
sequence of numbers (cn):

G(cn, z) =
1X

n=0

cnz
n. (5.6)

z denotes a coordinate in polar representation (i.e., e�iwk t).

By definition, a formal power series does not have to converge, but since this
generating function is defined to be an analytic function in a Hilbert Space,
it means that it has a convergent power series expansion. The goal of the
derivation is to come define a closed-form expression that can be evaluated
and makes the definition valuable. Assuming that cn is constant-recursive
sequence, the generative function can be rewritten as

G(cn, z
�1) =

1X

n=0

cnz
�n =

K�1P
k=0
p�k z

�K

1 +
KP
k=1
q�k z

�K

✓
zK

zK

◆
(5.7)

Which is a Padé approximate by definition. Note that, for the sake of math,
a multiplicative inverse of the complex number z was used. The modification
to the negative angle does not change anything about the real value of the
signal, since a real number is equal to a complex number (no matter positive
or negative) with its imaginary part equal to zero. The negative annotation
at the coefficients was introduced to denote that they are a coordinate in
the negative domain. After the derivation, it returns to the positive domain.
The derived generic function can be rewritten as

1X

n=0

cnz
�n =

KP
k=1
pkzk

1 +
KP
k=1
qkzk

(5.8)
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CHAPTER 5. DISCRETE RESONANCE SPECTRUM

This equation is solvable by deriving this equation with respect to the variable
z . By introducing the initial complex amplitude dk , the equality can be
rewritten as

KX

k=1

dk
1� ( zkz )

(5.9)

For a full derivation, please read Belkic (2019), page 65-77). This form looks
exactly as a geometric series

P1
n=0 ar

n = a
1�r , with |r | < 1 and thus if the

following inequality holds: | zkz | < 1, the equality can be written as

KX

k=1

dk

1X

n=0

(
zk
z
)n. (5.10)

Therefore,

cn =
KX

n=1

dkz
n
k . (5.11)

Notice that zk represents the complex plane. The derived summation repre-
sents a function in n. If the signal is a simple cosine, then it moves around
the unit circle when n increases. In the case that the frequency is complex,
and the decay is non-zero, the coordinates will fall inside or outside the unit
circle. In other words, cn can be expressed as a sum of oscillators. Solving
this equation for dk and zk is exactly what the FPT does in a certain interval,
i.e., rectangular window, defined as following:

1X

n=0

cnz
�n �

1X

n=N

cnz
�n (5.12)

Solving the equation by substituting it with the derivation we had before,
gives us

N�1X

n=0

cnz
�n =

KP
k=1
pkzk +

KP
k=1
rkzk�N

1 +
KP
k=1
qkzk

(5.13)

For a window function where p and r represents the coefficients at the left
and right side of the window. which is exactly the FPT (can also be seen as
a convolution). Essentially, this derivation allows us to find the cn’s and z ,
and therefore the oscillators. And since K = N/2, there is a unique solution.
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Figure 5.5: A pole-zero diagram consisting of dis-
tinct points that are not uniformly distributed due
to the non-orthogonal bases and are no longer lo-
cated on a unit circle due to the complex frequency
!k .

Non-Orthogonal Bases in a Hilbert Space

Although the usage of orthogonal bases ensures efficient computation and a
simple representation, using a collection of non-orthogonal basis functions can
be advantageous in some cases, such as in the Hilbert Space of Resonances.
The non-orthogonal bases allow us to have non-evenly spaced frequencies
�k , which is a sequence of numbers. By gaining more freedom with the
placement of the frequencies in this space, the frequencies of a signal can be
found more precise without limiting itself to a sample rate, as illustrated in
Figure 5.5, and a bigger space in the complex plane can be explored.
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5.4. TOWARDS HIGHER PRECISION WITH NON-ORTHOGONAL
BASES IN A HILBERT SPACE

Consider now the normalized sequence of signals

�k(t) = e
i!k t , k 2 Z. (5.14)

Here, !k is a sequence of numbers and if !k = k, we obtain the classical
Fourier series basis, with �k an orthogonal basis. However, if !k is not an
integer multiple, the signals are not orthogonal (Romberg, 2016). Since !k is
a complex function in our application of resonances (a complex frequency that
makes the sinusoidal decay), we do not have evenly spaced points anymore in
the discretization of the formula, as is shown in Figure 5.5. The reason why
a signal can equivalently be decomposed into resonances, as Fourier analysis
does with sines and cosines, is because
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Figure 5.6: A filtered Fourier spectrogram showing
the fundamental A4 and its overtones performed
by a flute.
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Figure 5.7: A filtered resonance spectrogram repre-
senting the same fundamental A4 and its overtones
performed by a flute. Note the high precision of
this method.

e�tcos(�kt) =
1

2
(e i(�k+i�k )t + e�i(�k�i�k )t). (5.15)

Summarized, hf |gi = 0 is not required to be true from an algebraic point of
view and the complex frequency with a decaying factor uses non-orthogonal
basis.

5.4 Towards higher Precision with Non-Orthogonal
Bases in a Hilbert Space

Due to the non-orthogonal property of the Fast Padé Transform, the size of
each frequency bin in a time slice is varying with respect to the parameters of
a resonance. This has enormous advantages in terms of precision when per-
forming spectral analysis. Figures 5.6 and 5.7 provide a visual demonstration
of the fundamental difference between the widely used Short Time Fourier
transform and the Fast Padé Transform with a synthetic audio recording of
a flute performing the musical note A4. The visualized signals were filtered
on power and frequency for the purpose of simple visualization of the main
difference between the two methods. The frequency was set in a range
between 0 and 2000 since the fundamental frequency and its observable
harmonics generally lay between this range (Huang, Sun, and Wang, 2017).
Resonances with a relatively small power were also removed from both plots.
In Figure 5.6, the resolution of the time and frequency domains are fixed and
bound with the STFT, and due to that, the signal is estimated with a division
over several nearest frequency bins, bounded by Heisenberg’s uncertainty
principle (Folland and Sitaram, 1997). However, due to the non-orthogonal
requirements of the basis, the size of frequency bins may vary and a more
precise estimation of the frequency components can be achieved.

5.5 Extracting Attributes from the Discrete Res-
onance Spectrum

5.5.1 Dynamic Resonances
The dynamic resonance is a non-explicitly documented technique (Homer,
personal communication, 2023), wherein different distance metrics were used
to combine two resonances in consecutive slices with each other. The six
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CHAPTER 5. DISCRETE RESONANCE SPECTRUM

distance measures were defined as following: frequency distance, harmonic
mean of the dk and wk coefficients, residue of the product of the resonances,
residue of the product of the resonances weighted by power, residue of the
product of the resonances multiplied by the spectra transference function and
residue of the product of the resonances multiplied by the spectra transference
function weighted by power.

A dynamic resonance is a relation of the distance metric d defined as following:

Definition 5.3 (dynamic resonance). Let Sx and Sx+1 be non-empty
consecutive slices in a spectrogram S with distinct resonances, and let
d(i , j) be a distance function defined for all pairs (i , j) representing those
resonances, such that i 2 Sx and j 2 Sx+1. We define the relation R
as follows:

8i 2 Sx ,9j 2 Sx+1 : d(i , j)  d(i , k) 8k 2 Sx+1 r {j}. (5.16)
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Figure 5.8: Two consecutive slices Sx and sx+1 and
the relation between two resonances measured with
a distance function d .

Figure 5.9: Dynamic Resonance spectrum.

Due to the slow computational speed of Python and excessive usage of loops,
his approach worked significantly slower than our density based approach.
However, the insight of using other distance measurements than the Eu-
clidean for the definition of distance inspired us to measure similarity between
resonances with the following definition:

cos(djk) =
Re

h
dj dk
wj�wk

i

|dj |2
�j

|dk |2
�k

(5.17)

After implementing and evaluating this approach, the distance measurement
based on similarity of resonances did not contribute to a better clustering.
However, it can serve as an inspiration for using other distance measurements
in future work to extract more features from the data.

5.6 Summary
We started this chapter with the definition of the discrete resonances in
the time and frequency domain and summarized the proof of the Fast Padé
Transform, which is a discrete convolution of the coefficients cn with the
coefficients qk , yielding the coefficients pk and rk and zeros. We showed
that the main difference with Discrete Fourier Transform is the use of a
non-orthogonal basis in a Hilbert Space. We introduced dynamic resonances
as a novel method for grouping resonances. However, it requires high
computational power and therefore, we will introduce a cognitive-based
method for cluster analysis for the extraction of musical structures from the
discrete resonance spectrum.
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CHAPTER S IX

Cluster Analysis of Resonances

Figure 6.1: The resonances in this figure is a rep-
resentation of the resonances with the strongest
power, extracted from the sound of a flute playing
the note A4. They are clustered by the K-means
algorithm (K = 4) and each cluster is represented
with a different color.

Figure 6.2: Resonances clustered by the DBSCAN
algorithm (✏ = 0.4, minP ts = 4) are represented
with different colors. The labeling mimics how a
human would draw circles around resonance groups
to extract specific features, which exactly aligns
with our desired outcome.

Clustering is an unsupervised machine learning technique that involves group-
ing similar data points based on a specific parameter, such as density or
similarity. There are various models known in the literature, with K-means
being a conventional one that generates a fixed number of clusters associated
with a central point. The Markov Cluster Algorithm, introduced by Stijn
Van Dongen (2008), is more appropriate for graphs/networks. Hierarchical
clustering on the other hand is often used for the analysis of social net-
work data and biological data analysis (Hexmoor, 2023; Yeturu, 2020). An
important drawback of both K-means and hierarchical clustering for our
application is that they do not automatically determine the number of clus-
ters. Density-based algorithms, however, such as Mean-Shift, DBSCAN, and
HDBSCAN, are more appropriate for this particular problem: resonances
require a density-based approach (sudden changes of dense regions imply
new musical objects), and they are also capable of automatically determining
the amount of clusters based on the input data. The previews provided in
Figure 6.1 and 6.2 highlights the benefits of using density-based algorithms
for resonance data.

6.1 Density-based Cluster Algorithms

First, let us provide a concise overview of the three density-based cluster
algorithms mentioned above. The iterative Mean-Shift algorithm moves each
data point towards the mean of its respective region to form clusters. This is
a centroid-based algorithm and works best for blob-shaped data. DBSCAN
is capable of identifying outliers as noise, unlike the Mean-Shift method,
and performs effectively on densely populated data with irregular shapes.
HDBSCAN is a variation of DBSCAN introduced by Campello, Moulavi, and
Sander (2013). In this algorithm, DBSCAN’s principle of border points (see
further) is abandoned, and only core points are considered as part of the
cluster. Even though this method may be beneficial for handling noisy data,
DBSCAN is nonetheless deemed to be the most appropriate clustering model
for this problem, as it is better to implement custom filtering methods for
noise reduction before performing clustering.
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CHAPTER 6. CLUSTER ANALYSIS OF RESONANCES

6.2 DBSCAN clustering algorithm

Figure 6.3: Step 1 | Select a point p and assume
minPts = 3 and ✏ = 0.1. If at least 3 points are
inside radius, mark p as a core point.

Figure 6.4: Step 2 | Iterate over each point and
mark all core points, classify left-overs as non-core
points.

Figure 6.5: Step 3 | Pick a random core point,
assign it to the first cluster together with all core
points in the radius.

Figure 6.6: Step 4 | Repeat for the neighbouring
core points.

Figure 6.7: Step 5 | Once all the core points have
been included in the initial cluster, the border points,
which are non-core points within the radius of the
core points, are added to the same cluster as well.
Note that these border points are not extended
iteratively.

Figure 6.8: Step 6 | Repeat this process to find all
clusters. Points that do not belong to any cluster
are called noise points and are marked with red.

Density-based Spatial Clustering of Applications (DBSCAN: Ester et al.,
1996) is a data based clustering algorithm. The algorithm attempts to
imitate the human ability to recognize groups of points with an arbitrary
shape that are closely located to each other, and singles out isolated points
as noise. Figures 6.3-6.8 visualize the DBSCAN algorithm step by step. The
model estimates the minimum density level using a method that relies on
a threshold value, minPts, for the number of neighbors within a radius ✏.
The algorithm begins by marking all core points in the dataset. A point p is
classified as core point if there are at least minPts points (including p) within
the radius ✏. In the next step, a random core point i is selected from which
all transitively included (i.e.,density-reachable) core points are identified to
form a cluster. Then, all border points, which are non-core points in the
radius of a core point, are added to the cluster of a core point. Notice that
a border point that is in the radius of two core points of different clusters
will just be classified in the first cluster that is processed. Any points that
are not density reachable from any core points are classified as noise and
do not belong to any cluster. To ensure that all points in the same cluster
are included, the minimum number of points (minPts) should be set to a
relatively low value (Ester et al., 1996; Schubert et al., 2017).

6.2.1 Complexity and Data structure
Multiple implementations of the DBSCAN algorithm exist. A more optimized
implementation utilizes a FIFO queue to keep track of the points which
are already labelled and a R⇤-tree, Kd-tree, or cover tree for performing a
continuous search for density points within a tree-like structure (Schubert et
al., 2017). The average time complexity is O(n log(n)), since the neighboring
queries are executed in logarithmic time, and labeling core and non-core points
takes O(n). Worst case, with degenerate data or naive implementations (e.g.,
not using the index structure), the time complexity becomes O(n2). We use
an adjacency list-based implementation, which is better in terms of running
time and memory usage compared to the matrix-based implementation.

6.2.2 DMBSDSCAN
A drawback of DBSCAN is that it performs less well at data with a wide vari-
ation in density. DMDBSCAN attempts to solve this problem by introducing
a dynamic ✏ estimation, suitable for each density level in the dataset (Elbatta
and Ashour, 2013). The algorithm is suggested for future work in case that
the static ✏-estimation would not be sufficient. The required accuracy can
currently be pre-defined and adjusted by the user.

6.3 Summary
We delved into a density-based clustering approach, in which labeling mimics
how a human would draw circles around resonance groups when plotting it
in a certain dimension. The next section will introduce a hierarchy wherein
we will be able to represent the obtained clusters and attribute them.
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CHAPTER SEVEN

Type-Based Knowledge Representation

Shi (2019) introduced the evolution of the human brain, denoting that the
appreciation of music by the brain cortex coincided with the development of
human abstract thinking. Knowledge is the possession of the ability to locate
information, and therefore, we will introduce Harley’s type-based framework
for the abstract representation of musical knowledge (Harley, 2020). His
framework uses a constituent structure (i.e., a multi-hierarchical information
model) that is able to represent the complex hierarchies of musical spaces.
The framework has a main, extendable module named CHAKRA, which
gives the user the freedom to create structures in terms of constituents,
attributes and hierarchies. A submodule of CHAKRA, named CHARM
(Wiggins, Harris, and Smaill, 1989), is a particular representation system
for the creation of music-specific multidimensional hierarchies. First, we will
emphasize the difference between knowledge and data, followed by highlighting
the importance of the type-based aspect of the CHAKRA framework, by
introducing three perspectives on computation: Type theory, Category Theory
and Typed logic. Afterward, the components of the CHARM system will
be briefly defined, serving to understand our own software architecture,
introduced in part III.

7.1 The Three Perspectives on Computation

Logic
Type Theory

Category Theory

Computation

Figure 7.1: Computational Trinity: a tripartite
correspondence between Logic, Type Theory, and
Category Theory.

The Three Perspectives on Computation, also called The Computational
Trinity, is the central organizing principle of a theory of computation that
unifies Logic, Type Theory, and Category Theory (Eades, 2012; Goguen,
1991). The three fields look different but are nevertheless equivalently
treatable. One may think of it more intuitively as the unification of a subfield
of logic, programming, and mathematics, wherein every proof can be written
as a program, every program corresponds to a mapping, and every mapping
to a proof (Harper, 2011).

7.1.1 Type Theory
At the early 20th century, Bertrand Russell introduced type theory to cope
with a paradox in naive set theory, which was expressed as follows:

H = {x |x /2 x}) H 2 H , H /2 H. (7.1)
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CHAPTER 7. TYPE-BASED KNOWLEDGE REPRESENTATION

The paradox arises when one considers whether H contains itself or not. If H
contains itself, then by definition it is a set that does not contain itself, which
is a contradiction. On the other hand, if H does not contain itself, then by
definition it is a set that should contain itself, which is also a contradiction.
This problem arises when impredicative universal quantification is allowed,
which means that the definition of the object involves quantifying over all
objects, including the object being defined itself. Russel’s type theory resolved
this problem by defining objects as part of a specific group. Consider a type
n, then we can redefine H as

Hn = {xn�1|xn�1 /2 xn�1}) Hn 2 Hn , Hn /2 Hn. (7.2)

In this case, the paradox is false since the sets are defined by the types, and
type n � 1 excludes type n (Eades, 2012).

C

X f

f � g
g

h

Y

W

Z

Figure 7.2: Category C with a set of objects
{X, Y, Z,W}, morphisms {f , g, h} and composition
of morphisms {f �g}. Each object also has an iden-
tity morphism: an arrow points to the object itself.

Type theory became the formal presentation that models objects and relations,
such as a variable, function or substitution, with types. For example, variable
10 has the type of natural numbers (N), which is in the built-in notation
written as 10 : nat. From this term, other typed terms can be constructed.
As illustrated in (Hoang, 2014), terms of the type N can be constructed
just by defining the variable as we defined before, or as a successor function
succ(n) : N:

0 1 :⌘ succ(0) 2 :⌘ succ(1)
succ succ

7.1.2 Category Theory
Tom Leinster described category theory as a bird’s eye view of mathematics.
From high in the sky, details become invisible, but we can spot patterns
that were impossible to detect from ground level (Leinster, 2016). Formally,
category theory is the study of mathematical structures using abstractions
of functions called morphisms, as well as a mathematical workspace and
theory (Barr and Wells, 2012; Eades, 2012). It provides the concepts to
meaningfully compare and combine unrelated systems by understanding their
patterns (Harley, 2020). A category C is an abstract object consisting of
a set of objects, morphisms and compositions of morphisms. The objects
and relations can visually be represented as directed graphs, as illustrated in
figure 7.2.

Functor

Category C Category D

Figure 7.3: A functor represented as a directed
edge from category C to category D.

Categories are connected through structure-preserving maps named functors.
They can be considered as morphisms in a category of subcategories. This
theoretical framework of formalization is especially useful for combining
different levels of abstraction (e.g. the unification of CHARM with other
modules as will be explained further), and for formal descriptions of systems.

7.1.3 Typed logic
The perspective on type theory, from a logical aspect, is the definition
of certain rules that must hold. An example of a formal language using
these inference rules for programming purposes, is Calculus of Inductive
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Constructions (Cic). An example of a typing rule in Cic is defined as
following:

E[�] ` T : s s 2 S x /2 �
WF (E)[� :: (x : T )] (7.3)

Where a term t is correctly typed in a global environment E if and only
if there exists a local context � and a term T such that the judgement
E[�] ` t : T can be derived from the following rules, as literally mentioned
by Inria (2018). However, the interpretation of this rule is not important in
context of the thesis and only serves as an illustration.

7.2 The CHAKRA System
Type theory is a strong and important foundation for the implementation of
the Common Hierarchical Abstract Knowledge Representation for Anything
(CHAKRA) framework, since it allows the integration of heterogeneous data
and avoids the paradox of naive set theory. CHAKRA was originally defined
in Coq1, a library with Calculus of Inductive Constructions as underlying
formal language (a mapping from logic to programming). Afterward, an
implementation of the CHAKRA-framework was written in Julia 2.

7.2.1 The CHARM System
The Common Hierarchical Abstract Representation of Music (CHARM)
intends to provide a logical specification of an abstract representation of
music (Pearce, 2005; Wiggins, Harris, and Smaill, 1989), regardless of the
particular style, data source or application (Smaill, Wiggins, and Harris, 1993).
It inherits the abstract structural components Constituent, Id and Hierarchy
from CHAKRA and applies it in the musical domain (Harley, 2022b).

Musical Objects with Attributes in a Space

Musical objects are seen as statements about the world in the musical space.
These atomic entities automatically add semantics to data wherefore they
can be considered as knowledge, rather than data. Note that data can
be seen as the simplest form of raw values. Knowledge, in contrast, is a
statement about something in the world space that could be true or false.

c1

Ma1

Ma2

Ma3

Figure 7.4: A simplification of a constituent c1 2 C
defined in the musical space M.

We call every existent musical object a Constituent and use them in a
hierarchical structure. Musical objects contain attributes such as f requency ,
ampl itude and onset which can be defined in an (abstract) musical space.
Often the attribute name and the name of the space is the same (for example,
the attribute pitch and musical space pitch). However, sometimes they do
not overlap (for example, the attributes onset and off-set both have the
musical space of time, but it is important that their attributes names are
different) (Harley, 2020). In Figure 7.4, an example of a musical object
(i.e., constituent) is given. The constituent is formed from a joint pair of

1https://nick-harley.github.io/chakra-coq/chakra.html
2https://github.com/nick-harley/Chakra

31



resonance r1 and �r1, and has 10 attributes. The attributes of musical
objects are equivalent to the features of a dataset.

Definitions

The first concept defined in CHARM, is the Constituent C, a high-level
grouping of musical objects defined in (multiple) musical spaces M (Wiggins,
Harris, and Smaill, 1989). Musical objects are atomic entities of the human
conceptualizations of music, such as resonances, slices in time of an audio
signal or onsets of notes. The set of locations in musical space M = (Ma)a2A
is a family of sets indexed by attributes A andMa is the subspace or dimension
indicated by the perspective a (Harley, 2020, p. 111). For example, a
constituent representing a resonance, contains the attributes frequency,
onset, decay and amplitude.

Theorem 7.1 (Attribute). The set of Attribute names A is a collection
of keys for key-value pairs, where key a 2 A.

Constituents are used to construct hierarchical structures. They are con-
nected in a directed acyclic graph and its relation is called a Hierarchy H. Note
that a single constituent can be defined in multiple hierarchical structures.

Definition 7.2 (Constituent). A musical object (i.e., a constituent) is
composed of a tuple <i, P(i), R(i)> where identifier = i , particles = P (i)
and attributes =R(i) (Harley, 2020, p. 112).

We explicitly use the notation R(i) here instead of A because A is the set
of names and R a set of relations between constituents and values. Thus,
(a, v) 2 Ri means that the value of an attribute should be taken.

i

R(i)

C

P (i)

Figure 7.5: A constituent C consisting of the iden-
tifier, particles and attributes.

.

Definition 7.3 (Hierarchy). H ⇢ C ⇥C is a binary relation C, such that
(C,H) forms a (simple) directed acyclic graph (DAG). The graph (C,H)
captures the hierarchical structure of the domain, where (c, c 0) 2 H
indicates that c 0 is part of c (Harley, 2020, p. 111).

7.3 Summary
We introduced the CHAKRA system as a model for the human-like ability to
locate and use information. The theoretical underpinnings of this framework
were explored from three different perspectives, providing a better understand-
ing of its principles. Finally, we defined the constituent elements of CHAKRA
in context of music, setting the foundation for the actual implementation in
the following part.



In this last part, we will demonstrate our own contribution, holding the
connection between the already developed model of perception with our own
model of cognition and knowledge representation. We will start with the
section that introduces our knowledge representation, since it gives an overall
view of obtained clusters of constituents. The hierarchies can generally be
categorized in four musical levels: frame-level, note-level, stream-level and
notation-level (Benetos et al., 2019). We demonstrate the possibilities of
the developed software for a note-level description of music and touch the
frame-level description with a first proposition.

III
Software Architecture
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CHAPTER E IGHT

Knowledge Representation Applied to Audio Files

8.1 Specification of the CHAKRA abstraction
We created a constituent structure (i.e., a multi-hierarchical information
model) to model a theoretical estimation of the underlying structure of per-
ception discussed in 3.3.1 Structuralism. This constituent structure was an
expansion of Harley’s type-based framework for the abstract representation
of anything. Learning and expanding knowledge about musical data was
achieved through density-based clustering techniques. The acquired knowl-
edge creates new dimensions in the hierarchical structure and gives more
structural insights about musical structures in audio fragments. We will start
with a discussion of the components of the music-specific CHAKRA imple-
mentation on resonances. Afterward, we briefly explain several engineering
considerations during the development of this software.

The central concept of the CHAKRA system is that it establishes the fun-
damental abstract types known as a Constituent, Identifier and Hierarchy.
The user of this framework is then responsible for creating a customized
implementation for these abstract types, inheriting their underlying structures.

8.1.1 Constituent
Every musical object in the hierarchical structure is called a Constituent.
New constituents are formed from finite sets of other constituents and are
composed of an identifier i , particles P (i) and attributes R(i), as has been
defined in 7.2. The value of an identifier is unique in a single set of identifiers.
We call particles the children of a constituent (i.e., node) and the attributes
are specific features of a constituent (e.g., onset, pitch, duration).

r1�r1

!

d w z

onset� duration

sample rateamplitude

phase

Figure 8.1: Visualization of a constituent contain-
ing a joint pair of resonances and its musical spaces.

Constituents of a DRS

The smallest musical objects in our particular hierarchy are resonances, they
lay at the lowest layer of the hierarchy. We define each resonance as a
constituent, containing 10 attributes, as illustrated in Figure 8.1.

Each resonance has a conjugate pair with similar attributes; although the
conjugate has the opposite sign of the frequency. For sake of completeness,
the imaginary part of the signal is kept and the resonance and its conjugate
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are combined in a new pair -constituent. From those pairs, slices in time
are taken. A slice is defined as a small period of time containing a subset
of the resonances (Figure 8.2). These slices are, in their turn, grouped by
a DRS-constituent. This constituent represents all the resonances in the
time-domain of a Discrete Resonance spectrum.

t0 t1

A
m

pl
itu

de

Time

t2 t3 t4

Figure 8.2: A rough illustration of a slice in the
time-domain representation of a signal. All musical
objects falling inside a time-slice tn are grouped
together by a slice constituent.

DRS

Constituents

Slice

Pair

Resonance

Figure 8.3: Two-dimensional hierarchical structure of the DRS hierarchy, consisting of four
levels of constituents, denoted with circles.

8.1.2 Identifier

i1
C1

Figure 8.4: A constituent c1 and its corresponding
ID i1.

SliceIDs

i1

CR1 C
R
2 CR3 C

R
4 CS1 CS2

i1i2

i2i3

i4

ResIDs

ResonanceCS SliceCS

Figure 8.5: The different sets of constituents and
their corresponding IDs allows them to have similar
names as long as they are defined within a different
set.

The relation between Constituents and Identifiers is bijective in the multi-
dimensional hierarchical structure. Their value can be repetitive through
different sets, but will always contain a unique value in a single set of identifiers
(e.g. ResIDs). The identifiers are important assets for finding components of
Constituents. By returning the identifiers of the underneath level instead of
the knowledge, improvements over speed and memory are achieved. Figure
8.5 emphasizes the usage of sets for the definition of different IDs.

8.1.3 Hierarchy
A Hierarchy H is a direct acyclic graph of constituents and is defined as
the abstract type Hierarchy. Subtypes of Hierarchy directly correspond to
specific implementations of this abstract type. We will now explore four
implementations of the hierarchies currently being developed, which can be
further expanded by incorporating additional machine learning techniques.

Definition of Several hierarchies

The DRS hierarchy originates from the idea of a Discrete Resonance Spec-
trum. It groups resonances (both negative and positive) based on information
from the time domain. Note the difference between the DRS constituent
and the DRS Hierarchy. Although they have the same name, they do not
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hold the same semantic value. Since half of the resonances are a subset of
the negative part, they are often not needed for the analysis of real audio
signals. Therefore, we defined the NEG hierarchy to group the resonances
with a negative frequency together. This connection can make filtering easier
if the imaginary part of the signal is not required. The NOTE Hierarchy
was created for the extraction of musical notes from spectral data. The
constituent representing a musical note is defined attributed with onset,
duration and pitch and can formally be defined as following:

Figure 8.6: Real-valued representation of the DRS
and HARM hierarchy for an audio fragment of a
flute playing A4. The blue-like points are part of
the DRS structure, including the resonances, pair,
slice and DRS constituents. The orange points
represent the constituents of the HARM hierarchy
(the graph was generated with Gephi).

NOTE_Dataset : CSPEC := 8Parts(Note) (8.1)

Where CSPEC is the type of constituent specifications defined in Calculus of
Inductive Constructions (see Chapter 7.1.3). Finally, the HARM Hierarchy
contains constituents of overtones corresponding to a specific fundamental
tone. A conceptual representation of the four hierarchies is represented in
Figure 8.7 and a real-valued representation of the DRS and HARM hierarchies
has been plotted in Figure 8.6.

NEG

n1

n2

h2

HARM NOTE

h1

Figure 8.7: A practical visualization of the state-of-the-art hierarchies in our software.
Each hierarchy is visualized in its own color, containing Constituents represented as nodes.

8.1.4 Operations
The two most important operations in the hierarchical structures are parts and
find. Parts gives all the particles of a selected constituent. The find operation
returns all the attributes of a constituent or collection of constituents.

8.2 Engineering Considerations
We chose to use Julia for knowledge representation modeling and generating
new constituents in the hierarchies. This decision was primarily influenced by
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8.3. SUMMARY

two factors: firstly, the existing implementation of CHAKRA in Julia, and
secondly, the superior speed performance of this uniquely typed language
compared to other high-level languages like Python. Julia has many features,
wherefrom multiple dispatch and duck typing are far away the most interesting
to mention for our application. Multiple dispatch allows multiple functions
with the same name, which is fast and was consequently exploited in the
implementation of our software. Languages supporting Duck typing allow
changing objects by adding new methods or attributes to those objects. Duck
typing is also present in languages like Python and C++, and is a major type
system category. Our main concern about Julia is, however, the fact that the
increase of its speed is mainly caused by the cost of the initial compilation
time.

8.3 Summary
This section discussed the actual implementation of the knowledge represen-
tation applied to the resonance information, which was, in its turn, extracted
from Audio files. We proposed several hierarchies, including the HARM and
NOTE hierarchy, for the extraction of notes and harmonies from an audio
file. The final chapter will discuss how the constituents of both hierarchies
were created and attributed.
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Note-level description
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Figure 9.1: The hierarchy of notes is part of the
Note-level description of music, highlighted in red.

The goal of this section is to illustrate how musical structures can be extracted
for a constituent abstraction in our knowledge representation. Musical
structures can in general be divided in a frame-level, note-level, stream-
level or notation-level description. The note-level description of music often
estimates the pitch, onset time and offset time in literature and corresponds
to the descriptive constituents in the NOTE Hierarchy. We will first show why
the estimation of those attributes requires the extraction of the fundamental
frequencies, and will then extract them through a relative-harmonics based
approach. This subset of fundamental frequencies will then be used in
the hyperparameter-tuned DBSCAN clustering algorithm from Chapter 6
to recognize individual notes. Finally, we apply a power-based filter to
enhance the extraction of notes from a resonance spectrum. This provides
a refinement for the pitch extraction of notes. In the last section of this
chapter, we also pitch our idea towards the extraction of harmonic overtones.

9.1 Fundamental Frequency Detection

Figure 9.2: A slice (the first two measures) from a
real audio recording of a violin performing Canon
in D, by Johann Pachelbel. Resonances that are
estimated to belong to tonic root are highlighted
in red.

As discussed earlier, musical instruments do not generate perfect sinusoidal
waves. The reverberation of the sound in the environment, unique construc-
tion of the instrument, the inimitable single performance of a musician as well
as the quality of recording equipment all contribute to the unique sound we
capture in an audio recording. Noise, as well as harmonic and non-harmonic
tones, interfere with each other, which makes the analysis of music relatively
complex. Since humans perceive harmonics as a combination of overtones in
harmonic series, we modelled the pitch perception by estimating the funda-
mental by the frequencies with the greatest relative harmonicity (Figure 9.2).
Harmonicity refers to the distribution of power in a resonance, and since
harmonic overtones are integer multiples of a fundamental tone, it is possible
to estimate the fundamental, even in cases that the fundamental is missing,
as was described in Chapter 3 Psychoacoustics. For example, if a flute is
playing an A4, the relative harmonicity with respect to A4 will be larger
than the harmonicity of B4. The measurement of the relative harmonicity is
examined through a resonance-harmonic inner product, described by Homer,
Harley, and Wiggins (2023) and defined as cosine similarity:
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9.2. CLUSTERING

SC (f , Hg⌘ � g⌘) = cos ✓ =
Re [hf | Hg⌘ � g⌘i]
kf k · kHg⌘ � g⌘k

(9.1)

The fundamental frequency ⌘0 = argmax
⌘

[SC (f , Hg⌘ � g⌘)], which exactly

estimates the frequencies with the greatest relative harmonicity. Homer,
Harley, and Wiggins (2023) are also engaged in refining a method called
the Rameau fundamental 3, which can currently be used for the Tonic root 3 Jean-Philippe Rameau (1722) founded the mod-

ern musical theory with the publication Traité de
l’harmonie réduite à ses principes naturels, by math-
ematically proving that every pitch consists of a
harmony. Rameau believed that the rules of har-
mony were derived from nature, called The vibrating
world, and these rules governed all music.

estimation, but should be further elaborated for recordings containing different
instruments.

9.2 Clustering
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Figure 9.3: ✏=0.1, minPts=4.
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Figure 9.4: ✏=0.1, minPts=10.
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Figure 9.5: ✏=0.3, minPts=10.

We performed the DBSCAN algorithm (discussed in Chapter 6) on the
detected fundamental frequencies in terms of frequency and onset to group
resonances belonging to a certain note. In a slice (the first two measures) of
a real audio recording of a violin performing Canon in D, by Johann Pachelbel
(Bridget, 2019), the DBSCAN algorithm has been performed with variable
values of ✏ and minP ts. Frequencies labeled with 0 are removed from the
Figure 9.6 and refer to all non-clustered resonances extracted from the audio
file, frequencies labeled as -1 are labeled as noise from the Fundamental
Frequency detection algorithm.
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Figure 9.6: A correct labeling with the DBSCAN through correct parameter estimation.
Performed on the first two measures of Canon in D.

9.2.1 Parameter estimation
As mentioned earlier, ✏ and minPts are the two parameters to be estimated.
Variations in clustering when varying the two parameters are represented
in Figures 9.3-9.5. Therefore, we will introduce two automatic parameter
estimators: the silhouette score and kneedle method.

Silhouette Score

The silhouette score is a normalized metric for the evaluation of the quality
of a clustering technique:

silhouette score =
� � ↵
max(↵,�)

. (9.2)
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CHAPTER 9. NOTE-LEVEL DESCRIPTION

↵ denotes the average distance between the points inside a cluster, and �
the average distance between all clusters. A high positive value implies that
the clusters are will distinct from one another, indicating a good clustering
performance. Values close to 0 imply cluster overlapping, and negative scores
tending towards -1 imply wrongly assigned points (Rousseeuw, 1987).

Kneedle Method

Several methods exist to estimate an optimal value for ✏. Satopaa proposed
the knee method in "Finding a "Kneedle" in a Haystack: Detecting Knee
Points in System Behavior" (Satopaa et al., 2011). From a k-distance graph,
with values sorted from small to large (or vice versa), the optimal parameters
can graphically be estimated by finding a knee or elbow in the graph as
illustrated in Figure 9.7. The mathematical definition of the curvature is
the basis definition for the knee estimate. Satopaa et al. (2011) defined the
Kneedle-algorithm as following:

Figure 9.7: Kneedle of a harmonic series from C5
to F played by a flute.

Definition 9.1 (Kneedle). For a continuous function f , there exists a
Kf (x) that defines the curvature of f at any point as a function of its
first and second derivative:

Kf (x) =
f 00(x)

(1 + f 0(x)2)1.5
. (9.3)

The point of maximum curvature is used in the Kneedle-algorithm to select
the optimal value for ✏, which is (1 - normalized value) of the knee locator
(or just the normalized value if inverse density ordering was implemented). It
is worth mentioning that the clustering results are significantly impacted by
the choice of ✏. A small value of ✏ will lead to inadequate clustering, whereas
a high value will result in most objects being merged into a single cluster.

9.2.2 Clustering Performance Evaluation

The rule of thumb for a threshold value of the minimum amount of neighbors
within a radius ✏, is minPts = dim⇤2 (Ester et al., 1996; Sander et al., 1998).
However, if the dataset is large or contains noisy data, a larger value for
minPts can be required. The threshold value was therefore estimated with
the silhouette score and a method comparison study for the ✏-estimation
was performed to evaluate the difference between the Kneedle-algorithm and
silhouette score on the quality of clustering. We examined the detection of
159 synthetically generated notes. The evaluated notes differ in duration,
pitch and distance. The hit or miss criterion was based on whether a group
of resonances representing a note was detected or not. We noticed that the
silhouette score performed a significantly better clustering than the kneedle
method. However, in both methods, due to the not-yet-perfect f0 estimation,
noise was clustered together and influences the results.
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9.3. ATTRIBUTING A NOTE CONSTITUENT

9.2.3 Clusters of noise
In this specific section, when we mention noise, we are referring to resonances
that are detected along with the fundamental tone, even though they are
not actually part of it. Most of them are classified as -1 by the DBSCAN
algorithm, but closely laying noisy points form sometimes unwanted little
clusters of overtones. However, they mostly have a relatively low power
compared to the resonances presented in the real fundamental. Therefore,
we removed the clusters containing a significantly lower power on average.
The difference between a plot with and without power is shown in Figure 9.8.
It is crucial to get rid of these clusters of noise for attributing constituents
to a particular note in our system, as well as for the musical transcription of
the sound.

Figure 9.8: A comparison between two three-dimensional plots with a third axis denoting
the power. Clusters with a small average power, relative to the other ones, are removed.

9.3 Attributing a Note Constituent
Resonances belonging to a cluster are each assigned to a constituent repre-
senting a musical note, attributed with the average frequency, onset, off-set
and relative duration. Extracting the real rhythm of a live performance is
more complicated than it seems, since people never play perfectly on the beat
as written on paper. Therefore, we focused on the accurate extraction of
pitch for this thesis, and suggested a relative estimation of the duration in our
software. It correctly estimates the duration of notes for computer-generated
audio files, but needs a refinement for audio files performed by humans in
future work.

Example: Syrinx (Flute Solo)

We analyzed the pitch estimation of a slice of Syrinx, by Claude Debussy,
performed by a real and artificially generated flute. The ground truth music
score is presented in Figure 9.9. The first two measures have strong variations
in rhythm and the notes are laying nearby, which makes is harder for the
cluster algorithm to recognize two different objects. With the application of
our method on this sample, the pitch of each note was correctly reconstructed
based on the frequency data within each cluster. Please note that there is
a slight difference in notation due to the key signature in the original piece.
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Figure 9.9: Western score notation of the first two measures of Syrinx, by Claude Debussy.

Thus, the pitch of each note in this slice has been assigned correctly4, as4 About musical notation: The flat ([), sharp (]),
and natural (\) signs preceding a note indicate that
the note should be played a semitone lower, higher,
or disregarding the sign in the key signature or the
modification of a tone within the same measure.

illustrated in Figure 9.10.

Syrinx (pitch)
Anastasia Krouglova using Python

! " # # #
$

" ## # #" # # "#" #" # # #

Figure 9.10: The pitches in the first measure of Syrinx, by Claude Debussy were correctly
assigned and serve as one of the attributes for the Note constituent.
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Figure 9.11: The hierarchy of harmonics is part of
the Frame-level description of music, highlighted in
purple.

9.4 Towards a Frame-level description
We introduce our approach towards a subtask of the frame-level description
of music, namely the extractions of harmonic overtones. The frame-level
description (i.e., multi-pitch estimation) estimates the number of notes that
are simultaneously played in a slice of time (Benetos et al., 2019). It is
currently based on the assumption that the fundamental tone is known, but
should be expanded to a relative estimation and extraction of overtones for
polyphonic music.

9.4.1 Attributing the Harmonic Constituent
As discussed in the chapter about psychoacoustics, a real musical tone
often consists of a fundamental, but also from harmonic and non-harmonic
overtones. Since harmonic overtones are integer multiples of the fundamental
tones, they can be found by defining them in a space of the so-called f0-
likeliness (H):

H = E(
f

f0
mod 1) (9.4)
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Figure 9.12: The extraction of the harmonic over-
tone from a real audio recording performed by
Bridget (2019) (produced and approved for use
by Stringspace).

E ⇠ N (0.5, 0.5) simulates the idea of entropy for the definition of how likely
a resonance is part of an overtone. We used a real audio recording of a violin
performing Canon in D, by Johann Pachelbel (Bridget, 2019) to analyze the
overtones of a violin. We limited the space with a bound defined in the H
space, which give us a first approximation of the overtones if the fundamental
is known.
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Conclusion

The aim of this thesis was to create a multipurpose cognitive framework
for musical analysis. We modelled human-like perception with the discrete
resonance spectrum, grouped this information with cognitive models and
structured the clusters in a type-based knowledge representation. We ex-
tracted musical structures from audio files and stored them in a hierarchical
structure. This way, a bidirectional link between knowledge and data was
obtained. Our methodology allows us to infer knowledge from different
methods and build a system for a long-term perspective. Moreover, by using
a cognitive clustering-approach, one of the fundamental music transcription
challenges of overlapping tones has been resolved. To conclude, we created a
tool that gives a range of possibilities in different subtasks of musical analysis
and can push this research domain further by allowing inference between
various machine learning models.
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Further Work

For future work, we suggest to search for a cognitive approach towards a
multi-pitch estimation of music, since the inference of musical attributes,
such as pitch, in a polyphonic musical signal is a highly challenging problem
(Benetos et al., 2019). Further, we also propose to improve the relative
estimation of note durations which is currently present in our software, for
a more accurate musical transcription of musical signals. It would also be
interesting to extract less mainstream musical structures, such as phrases. For
instance, they can be perceived as a musician gently inhaling before playing
wind instruments, the subtle shift in bow direction for string instruments, or
the relative power of notes in key instruments.
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Nomenclature

Symbols

dk Initial complex amplitude of a resonance
 k Initial phase of a resonance
�k Real frequency of the resonance
!k Complex frequency of a resonance (�k + i�k)
�k Rate of decay
F [f (t)] Fourier transform of a time-domain signal

F�1[f̂ (!)] Inverse Fourier transform of a frequency-domain signal
||f || Norm of f
h↵|�i Inner product

f (x) Complex conjugate
P (i) Particles of a Constituent
R(i) Attributes of a Constituent

Acronyms and Abbreviations

Cic Calculus of Inductive Constructions
Coq library with Calculus of Inductive Constructions as underlying formal language
CSPEC Type of constituent specifications
CHAKRA Common Hierarchical Abstract Knowledge Representation for Anything
CHARM Common Hierarchical Abstract Representation of Music
DAG Directed Acyclic Graph
DBSCAN Density-based spatial clustering of applications with noise
DFT Discrete Fourier Transform
FFT Fast Fourier Transform
L2 Space of absolutely square-summable functions
STFT Short Time Fourier Transform
VUB Vrije Universiteit Brussel
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